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Abstract

An advanced design of sandwich structures requires not only knowledge of global stress- and deformation behav-

iour, but also knowledge of local effects, such as load singularities and loss of stability caused by short wave wrinkling

of one (bending load) or both (compressive load) sandwich skins.

Based on the nonlinear theory for sandwich shells with seven kinematic degrees of freedom, introduced by K€uhhorn
(1991, 1993) and K€uhhorn and Schoop (1992), an improved theory for plane sandwich shells with eight degrees of

freedom is presented, taking into account the core warping, which enables a much better representation of the sandwich

core behaviour. Because of consideration of quadratic core thickness, linear core shear strain, and longitudinal core

deformation, prediction of wrinkling behaviour can be improved even for moderately thick cores with comparably thin

skins. The kinematic quantities as well as the nonlinear differential equations and the simplified equations of first-order

theory resulting from them are presented. Short numerical examples demonstrate the efficiency of the theory.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Sandwich (SW) structures are three-layer high performance lightweight structures (Wiedemann, 1986;

Plantema, 1966; Stamm and Witte, 1974, among others) consisting of a soft core which is covered by stiff

skin layers (Fig. 1). They are characterised by both excellent bending stiffness and low weight. However,

due to their comparatively high shear flexibility, the global behaviour concerning deflection and buckling is

described by a shear flexible theory of the Reissner (1945)/Mindlin (1951)-type where only the membrane
stresses in the thin skin layers are considered, whereas the in-plane stresses appearing in the core are
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Fig. 1. Sandwich construction.
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neglected. This theory is known as the Sandwich Membrane Theory (SWMT, see Wiedemann, 1986;

Plantema, 1966, among others) which has proven to be reliable for a long time.

Indeed SW-structures under compressive loads show, besides global instability cases (buckling), also

local instability phenomena such as short wave wrinkling of one or both skin layers (Fig. 2). Aiming at a
determination of the failure-relevant wrinkling membrane stresses in the skin caused by compressive loads,

separate formulas (Stamm and Witte, 1974; Vonach and Rammerstorfer, 2000, among others) have been

developed for estimation purposes; they take into account skin and core parameters. Furthermore, the

behaviour of SW-structures depends on load application because which often disturbs the state of mem-

brane stresses in the skins.

For an at least approximate description of both global structural behaviour of SW and local phenomena,

the SWMT must be extended. For this purpose K€uhhorn (1991, 1993) and K€uhhorn and Schoop (1992)

presented a thickness flexible, geometrically nonlinear SW-shell theory using seven kinematic degrees of
freedom. This theory is able to solve the problems mentioned above with sufficient accuracy if the local

pertubations considered are characterised by wavelengths which are not too short (numerical investigations

show that this theory is applicable for wrinkling problems characterised by half waves longer than 0.8-times

of the core thickness). This extended theory includes the independent bending stiffness of each skin sepa-

rately. Also a linear thickness stretch distribution over the height of the core is taken into account whereas

the core in-plane stresses remain unconsidered.

In order to accurately describe even pertubations characterised by shorter wavelengths, the theory

mentioned above will be extended. Therefore a geometrically nonlinear thickness flexible theory for plane
SW-structures using eight kinematic degrees of freedom, with special emphasis on core warping, will be

presented. The generalised SW-core description is based on a compatible (at least in first-order theory) core

displacement field that approximates the three-dimensional strain and stress state sufficiently and also takes

core warping into account. Inside the SW-core this extension results in a quadratic description of the

thickness stretch over the height and a linear transversal shear strain as well as an in-plane strain up to the
Fig. 2. Local instability cases.
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fourth order. In this way the wrinkling problem and the stresses (peeling- and shear stresses) in the contact

zone between the core and the covering skins, essential for failure of a SW-structure, are indicated more

accurately.

Frequently, the study of local behaviour of SW-structures is done considering thick skin layers with a
thin core and thin skin layers with a thick core (see Section 3). Generally, with this nomeclature, the long-

and short-wave decay behaviour of disturbances shall be characterised. Because of the dependency on

geometrical relation (skin/core thickness � t=h) and the different material stiffnesses (skin=core � sE=cE), a
relation between wrinkling half-wavelength a and core thickness h (a=h or a=d, with d ¼ hþ t) would be a

more exact identification.

The design of the following two-dimensional SW-theory is closely related to the works of Naghdi (1972)

and others (Simo et al., 1990; Frostig, 1998; Kr€atzig, 1993; Schoop, 1988; Bischoff and Ramm, 2000;

Vonach and Rammerstorfer, 2001, among others), which deal with extended shell/plate kinematics. The
aim of this work is an enhanced kinematic description specialised for classical three layered and symmetric

SW-structures using as few degrees of freedom as is sufficient to represent not only the global but also, at

least approximately, the local behaviour such as, e.g., short wave wrinkling.

At first, in order to achieve greater clarity, the derivations of kinematic and static quantities will be

presented separately for skin and core.
2. Geometrically nonlinear, thickness flexible theory with generalised core warping for plane sandwich

structures

2.1. Requirements and assumptions

SW-structures are considered to be plane and two-dimensional with the following properties:

• They are three-layered and symmetric in respect to the midplane.

• The core material is substantially softer than the skin material (cE � sE); both materials are considered

to be homogeneous (in case of inhomogeneous materials (e.g. core made of Honeycomb) homogenised

data has to be used).

• In the undeformed reference configuration the thicknesses of core and skins should be constant.

• For the SW-skins the Kirchoff/Love theory is valid; that means flexible in stretching and bending but
rigid against shear.
2.2. Kinematic and static quantities of the SW-skins

The development of the required kinematic description is based on the fact that the membrane strains of

the skins and the shear strain of the core are relevant for representation of the global behaviour (SWMT, 5
DOF). The description of local effects requires, in addition, consideration of the individual skin curvatures

and, because the core must support both skins, consideration of its transversal and in-plane deformations is

necessary (three additional DOFs) as well.

The following kinematic modelling of the SW is based on parameters which are defined with regard to

the midsurface. In detail these parameters are the position vector r and the director d as well as two

intensity coefficients az1 and az2, mainly interpreted as the linear and quadratic parts of the core thickness

strain, both of which are linked with the associated core cross-section warpings.

The following geometric SW-parameters are introduced: t: thickness of SW-skin, h: thickness of SW-
core, d ¼ hþ t: distance between skin midsurfaces.
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Further, quantities are denoted with a top right index, where wi, i ¼ 1; 2: refers to the skins in general,

whereas the upper skin is denoted by i ¼ 1 and the lower skin by i ¼ 2.

In the case of a missing top right index, w is defined with regard to the geometric midsurface.

Using Lagrangian coordinates qa of the midsurface for the description of a material point in the
undeformed configuration by X iðqaÞ and in the deformed configuration by xiðqaÞ, the vectors of the geo-

metric midsurface (Fig. 3) are defined as follows:
RðqaÞ ¼ 1

2
ðX1 þ X2Þ and rðqaÞ ¼ 1

2
ðx1 þ x2Þ; ð1Þ

nðqaÞ ¼ 1

d
ðX1 � X2Þ; jnj ¼ 1 and dðqaÞ ¼ 1

d
ðx1 � x2Þ; jdj 6¼ 1: ð2Þ
The material points of the two skin midsurfaces (see Eqs. (1) and (2)) are defined in a way that in case of

identical midsurface coordinates qa the vector connecting these two points in the reference configuration

(dn) is perpendicular to the midsurface (Fig. 3).

For reasons of simpler comparison with other works (K€uhhorn, 1991, 1993; K€uhhorn and Schoop, 1992;

Schoop, 1988; Schoop, 1999), the definition of the director d remains unmodified, but it can also be ex-
pressed by the vectors n and w as in the following equation:
d ¼ a3
d=2

¼ nþ w

d=2
; where w ¼ d

2
ðd � nÞ: ð3Þ
See for example the papers of Bischoff and Ramm (2000) or B€uchter et al. (1994).

2.2.1. Kinematics of the SW-skins

According to Fig. 3 and Eqs. (1) and (2) the exact description of the skin midsurfaces is given by the

midsurface vectors as follows:
X iðqaÞ ¼ R� d
2
n and xiðqaÞ ¼ r� d

2
d ð4Þ
with the additional condition that the triple scalar product ½d; r;1; r;2� > 0 remains positive (no penetration).

The Nabla-operator
$ ¼ $2 þ n
o

oz
is divided into $n ¼ n

o

oz
and $2 ¼ aa

o

oqa
; ð5Þ
Fig. 3. Kinematic description of the SW-skins and the midsurface.
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where $n denotes the transversal and $2 the in-plane part and where aa is the reciprocal base for

aa ¼ oR=oqa ¼ R;a with respect to the generally curvilinear coordinates qa. Therefore the following relation

holds:
$2 � R ¼ aa � R;a ¼ E2¼^ d�ba�aa � ab: ð6Þ
E2 represents the in-plane unit tensor and � stands for the dyadic or tensorial product, respectively. If

Cartesian coordinates qa ¼ X a are used, the in-plane part of (5) is simplified to $2 ¼ eao=oX a and

aa ¼ aa ¼ ea, where ea is the orthonormal base. Further developments are based on the introduction of the

gradient tensors of the midsurface vectors. These tensors are planar with respect to the undeformed and

spatial with regard to the deformed configuration:
F ¼ GradTr ¼ ð$2 � rÞT ¼ ðr;a � aaÞT; ð7Þ

G ¼ GradTd ¼ ð$2 � dÞT ¼ ðd ;a � aaÞT: ð8Þ
2.2.2. Membrane strain of the SW-skins

The application of (5) to (4) leads to
F i ¼ ð$2 � xiÞT ¼ $2

�
� r

�
� d

2
d

��T

¼ F � d
2
G ði ¼ 1; 2Þ; ð9Þ
whereat the in-plane Green–Lagrangian membrane strain tensor of skin i is defined as
Di ¼ 1

2
ðF iT � F i � E2Þ ¼

1

2
FT � F
��

� E2 þ
d2

4
GT � G

�
� d

2
ðFT � G þ GT � FÞ

�
: ð10Þ
2.2.3. Curvature of the SW-skins

The complexities within the invariant description of the individual skin bending strains due to the
consideration of the Kirchhoff-Hypothesis require an indirect procedure. Using the auxiliary directors d i

(Fig. 3) of the skins, and assuming that these remain perpendicular to the tangential plane in the deformed

configuration, yields
F iT � d i ¼ 0 and d i � F i ¼ 0; ði ¼ 1; 2Þ with F iT ¼ $2 � xi ¼ aa � oxi

oqa
¼ aa � gia: ð11Þ
The tangential vectors gia define the tangential plane in the deformed configuration. The application of

the in-plane nabla operator
$2 � ðF iT � d iÞ ¼ 0 ¼ ð$2 � F iTÞ � d i þ ð$2 � d iÞ � F i
at first yields to
ð$2 � d iÞ � F i ¼ �ð$2 � F iTÞ � d i ¼ �ð$2 � $2 � xiÞ � d i: ð12Þ
Taking into account that the bending strain Schoop (1988, 1999) for the ith skin is described by
ji ¼ 1

2
F iT � ðd i
n

� $2Þ þ ð$2 � d iÞ � F i
o

ð13Þ
and due to the consideration of the Kirchhoff-Hypothesis (Label: hKi), the twice-underscored part in (13)
can be found again in (12) and replaced by the underscored term of (12). Finally, after an analogous

procedure for the transposed term (11) follows:



5430 A. K€uhhorn, M. Golze / International Journal of Solids and Structures 41 (2004) 5425–5446
j
hKii

¼ � 1

2
d i � ðxi
�

� $2 � $2Þ þ ð$2 � $2 � xiÞ � d i�: ð14Þ
Taking (4) into account and approximate d i by d, which becomes less accurate in case of increasing shear
deformations, finally the bending strain of the ith skin can be found
j
hKii

¼ � 1

2
d � ðr
�

� $2 � $2Þ þ ð$2 � $2 � rÞ � d � d
2
d � ðd½ � $2 � $2Þ þ ð$2 � $2 � dÞ � d�

�
: ð15Þ
2.2.4. The stress resultans of SW-skins

As resultants of the second Piola–Kirchhoff stresses Si ¼ Siabaa � ab over the skin thickness t, the second
PK-skin membrane and skin moment tensors are defined as follows:
ni ¼
Z t

zi¼0

Si dzi and mi ¼
Z t

zi¼0

ziSi dzi; ði ¼ 1; 2Þ: ð16Þ
2.2.5. The midsurface related SW-quantities

In order to achieve clarity as well as a better comparability regarding the SWMT, all quantities are

related to the midsurface. Furthermore, the stress resultants which correspond to the SWMT (N ;M;Q) are

labeled by capital letters. From the consideration of the skins according to Figs. 4–7 the 2nd Piola–

Kirchhoff stress resultants and the Green–Lagrangian strain SW-quantities can be specified:

• SW-membrane force and SW-membrane strain tensor (see (10) and (16))
N ¼ n1 þ n2; ð17Þ

D ¼ 1

2
ðD1 þD2Þ ¼ 1

2
FT � F
�

� E2 þ
d2

4
GT � G

�
: ð18Þ
• SW-moment and SW-bending strain tensor (see (10) and (16))
M ¼ d
2
ðn1 � n2Þ ð19Þ

j ¼ 1

d
ðD1 �D2Þ ¼ 1

2
ðFT � G þ GT � FÞ; ð20Þ
respectively for recalculation
n1;2
�

¼ 1

2
N � 1

d
M; D1;2 ¼ D� d

2
j

�
: ð21Þ
Fig. 4. Membrane force.



Fig. 5. (Membrane-) moment.

Fig. 6. Sum skin moment.

Fig. 7. Difference skin moment.

A. K€uhhorn, M. Golze / International Journal of Solids and Structures 41 (2004) 5425–5446 5431
• Sum of SW-skin bending moment and SW-skin bending strain tensor (see (14) and (16))
smS ¼ m1 þm2 ð22Þ

j
hKi

S ¼ 1
2

j
hKi1
�

þ j
hKi2
�

¼ � 1

2
d � ðrf � $2 � $2Þ þ ð$2 � $2 � rÞ � dg ð23Þ
• SW-skin bending moment and SW-skin bending strain difference-tensor (see (14) and (16))
smD ¼ m1 �m2; ð24Þ

j
hKi

D ¼ 1

2
j
hKi1
�

� j
hKi2
�

¼ � 1

2

d
2
d � ðd½

�
� $2 � $2Þ þ ð$2 � $2 � dÞ � d�

�
; ð25Þ
respectively, for recalculation
m1;2

�
¼ 1

2
ðsmS � smDÞ; j

hKi1;2
¼ j

hKi
S � j

hKi
D

�
: ð26Þ
From quantities presented above the virtual inner work of the SW-skins is obtained
dsAi ¼
Z
A

N � �dD
�

þM � �djþ smS � �d j
hKi

S þ smD � �d j
hKi

D

�
dA; ð27Þ
where ‘‘Æ Æ’’ specifies the double contraction according to NabdDba.
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2.3. Kinematic and static variables of the SW-core

2.3.1. The approach for core deformation

Different preliminary considerations have shown (Vonach and Rammerstorfer, 2000; K€uhhorn, 1991;
Golze, 2000) that the short-wave wrinkling problem, which appears mainly in the case of thin skins and

thick core, requires an improved description of the SW-core concerning transversal, shear, and longitudinal

stiffness. Therefore an extended kinematic approach for the core deformation in comparison to K€uhhorn
(1991, 1993) and K€uhhorn and Schoop (1992) is developed which provides a quadratic thickness stretch

and a linear shear strain each in z-direction, as well as a consideration of associated cross-section warping.

It should be mentioned that an approximation of the thickness strain distribution up to the quadratic

order is still crude. Indeed numerical investigations using three-dimensional finite elements demonstrate

that it may be more important to take the core warping into account than to expand the thickness strain
distribution further.

The derivation of this compatible displacement field is, at first, realised for the SW-bar (Fig. 8) con-

sidering small displacements (first-order theory). Subsequently a generalisation with regard to geometric

nonlinearity and multidimensionality is realised with the help of invariant expressions concerning the

strains; the generalisation holds for large rotations but moderate core strains.

The approach is based on a displacement field uðx; zÞ (longitudinal direction) and wðx; zÞ (thickness

direction) corresponding to K€uhhorn (1991) and Golze (2000):
uðx; zÞ ¼ CI þ zCII þ z2
�

� h2

4

�
CIII þ z z2

�
� h2

4

�
CIV þ z2

�
� h2

4

�
z2
�

� h2

2

�
CV; ð28Þ

wðx; zÞ ¼ wþ zaz0 þ z2
�

� h2

4

�
az1
h

þ z z2
�

� h2

4

�
az2
h2=2

: ð29Þ
According to Fig. 8 and analogous to Section 2.2.5 the following kinematic quantities, defined with

regard to the geometric centerline, are applied:
uðxÞ ¼ u1 þ u2

2
; wðxÞ ¼ w1 þ w2

2
; az1ðxÞ; ð30Þ

bðxÞ ¼ u1 � u2

d
; az0 ¼

d
h
w1 � w2

d
; az2ðxÞ ð31Þ
Fig. 8. Undeformed and deformed configuration.
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and thus
uiðxÞ ¼ u� d
2
b; wiðxÞ ¼ w� haz0: ð32Þ
Afterwards, the derivative of x will be marked by a dash
o

ox
ðÞ ¼ ðÞ0: ð33Þ
The adjustment of (28) and (29) to the skin edges (Fig. 8) requires
u x; z
�

� h
2

�
¼ ui � t

2
ðwiÞ0 and w x; z� h

2

� �
¼ wi; ði ¼ 1; 2Þ ð34Þ
where wi in (34) is identically satisfied. Assuming that the shear strain distribution in thickness direction

remains linear and the linear part depends exclusively on az2, the determination of the remaining constants

becomes possible, and from this the compatible displacement- and strain fields become (see also Fig. 9):
ð35Þ
with the warping functions
g0ðz2Þ ¼
1

2

th
2

�
þ h2

4

�
� z2

��
;

g1ðz3Þ ¼
z
3h

h2

4

�
� z2

�
;

g2ðz4Þ ¼
1

2h2
h2

4

�
� z2

�
z2
�

� h2

2

�
:

ð36Þ
az0, az1, az2 are intensity coefficients corresponding to the weighted constant, linear, and quadratic parts of

the thickness stretch ezz in (35). These intensity coefficients are treated as additional kinematic degrees of

freedom. Fig. 9 shows the separated parts of the core warping according to (35), where A corresponds to

the Timoshenko- and Reissner/Mindlin-part of the SWMT, whereas the parts B, C and D are new and

provide reasons for the improved core description. In Fig. 10 some combinations of symmetric parts of the

deformations B and C as well as the antimetric parts A and D are exemplarily shown with regard to their

appearance in case of a local loss of stability due to wrinkling waves. A generalisation in terms of nonlinear

Green–Lagrangian strains corresponds to K€uhhorn (1991, 1993) and K€uhhorn and Schoop (1992) by
describing the strain quantities in a coordinate-invariant way using eight SW-DOF r, d, az1, az2 and the

quantities of (18), (20), (23), (36) as follows:



Fig. 9. Contribution of warping in (35).

Fig. 10. Combinations of core deformation parts.
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cDðqa; zÞ ¼ cD0 þ z
d
h

j

�
� t
d
j
hKi

S

�
þ
X2
i¼0

gðziþ2Þi$2 � $2azi; ð37Þ

cezzðqa; zÞ ¼ az0 þ
z

h=2
az1 þ

z2

h2=6

�
� 1

2

�
az2; ð38Þ

cesðqa; zÞ ¼
d
2h

FT � d
�

� h2

6d
$2az1

�
þ z
8
$2az2; ð39Þ
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where
cD0 ¼
1

2
ðFT � F � E2Þ and az0 ¼

d
2h

ðd � d � 1Þ: ð40Þ
The three-dimensional Green–Lagrangian strain tensor for the description of the core thus consists of an in-

plane part (37), a part from thickness stretch (39), and finally, parts from transversal strains (38)
cDE3ðqa; zÞ ¼ cDþ ces � nþ n� ces þ cezzn� n: ð41Þ
Therefore the kinematics of the core are valid for arbitrarily large rotations and displacements while the

core strains should remain moderate, which is always given in the case of real SW-structures.

2.3.2. The arranged SW-core strains

Afterwards the core strains (37)–(39) are arranged in powers of z. Using (41) according to
cDE3ðqa; zÞ ¼
Xn
‘¼0

z‘D
h‘i
ðqaÞ; ð42Þ
the in-plane contribution (37) is obtained as
cD ¼
X4
‘¼0

z‘cD
h‘i
; with

cD
h0i

¼ cD0 þ
th
4

�
þ h2

8

�
$2 � $2az0 �

h2

16
$2 � $2az2;

cD
h1i

¼ d
h

j

�
� t
d
j
hKi
�
þ h
12

$2 � $2az1;

cD
h2i

¼ � 1

2
$2 � $2az0 þ

3

8
$2 � $2az2;

cD
h3i

¼ � 1

3h
$2 � $2az1;

cD
h4i

¼ � 1

2h2
$2 � $2az2;

ð43Þ
the shear contribution (39) as
ces ¼
X1
‘¼0

z‘c e
h‘i

s
; where c e

h0i
s ¼

d
2h

F � d
�

� h2

6d
$2az1

�
; c e

h1i
s ¼

1

8
$2az2 ð44Þ
and the transversal contribution (38) as
cezz ¼
X2
‘¼0

z‘c e
h‘i

zz; where c e
h0i

zz ¼ az0 �
1

2
az2;

c e
h1i

zz ¼
2

h
az1;

c e
h2i

zz ¼
6

h2
az2: ð45Þ
2.3.3. Definition of SW-core stress resultants

The stress resultants are defined systematically corresponding to
c s
h‘i ¼

Z z¼þh=2

z¼�h=2
z‘cS dz and ‘ ¼ 0; 1; . . . ; ð46Þ
where ‘ ¼ 0; 1; 2; . . . indicates the parts from force, moment, bi-moment etc. Thus the in-plane core stress

tensor resultants (‘ ¼ 1; 2; 3; 4) are described as
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c n
h‘i

¼
Z

z‘cSab dzea � eb; where

c n
h0i

¼ cn; c n
h1i

¼ cm ðcore-membrane force and-bending momentÞ;
c n
h2i
; c n

h3i
; c n

h4i ðbi-; tri-; quatro-momentÞ:

ð47Þ
The shear vector resultants (‘ ¼ 0; 1) are
cQ
h‘i

¼
Z

z‘cSza dzea; where

cQ
h0i

¼ cQ; cQ
h1i

ðcore-shear force and momentÞ
ð48Þ
and the transversal resultants (‘ ¼ 0; 1; 2) are
c t
h‘i

¼
Z

z‘cSzz dz; where

c t
h0i
; c t

h1i
; c t

h2i
ðtransversal force;moment; and bi-momentÞ:

ð49Þ
For a clear arrangement the expressions c n
h0i
, c n

h1i
, cQ

h0i
are simplified to cn, cm, cQ.

Thus the virtual inner work of the SW-core can easily be formulated as:
dcAi ¼
Z
A

X4
‘¼0

c n
h‘i � �dcD

h‘i
 

þ
X1
‘¼0

2cQ
h‘i

� dc eh‘is þ
X2
‘¼0

c t
h‘i
dc e

h‘i
zz

!
dA: ð50Þ
2.4. The external loads

The total virtual external work due to boundary (see 2.5), surface and volume loads has to be split up

according to
dAe ¼ dAb þ dAes þ dAev: ð51Þ

As simplification, volume forces are neglected (else see K€uhhorn, 1991), and surface forces piðqaÞ are related
to the skin midsurfaces (Fig. 11). The result is:
dAes ¼
Z
A
ðp1 � dx1 þ p2 � dx2ÞdA ¼

Z
ðp0 � drþ p1 � ddÞdA ð52Þ
Fig. 11. Surface loads.
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in which
p0 ¼ p1 þ p2 and p1 ¼
d
2
ðp1 � p2Þ ð53Þ
are external surface force and force couple vectors.

2.5. Equilibrium and boundary conditions

2.5.1. Principle of virtual work on the SW-structure

The deduction is based on the principle of virtual work:
dAe ¼ dAi () dAb þ dAes ¼ dsAi þ dcAi; ð54Þ
specified by (27), (50), (52) to the above SW-structure
dAb þ
Z
A
ðp0 � drþ p1 � ddÞdA ¼

Z
A

N � �dD
�(

þM � �djþ smS � �d j
hKi

S þ smD � �d j
hKi

D

�

þ
X4
p¼0

c n
hpi � �dcD

hpi
 

þ
X1
p¼0

2cQ
hpi

� dc ehpiS þ
X2
p¼0

c t
hpi
dc e

hpi
zz

!)
dA ð55Þ
transformed by the use of Stoke’s theorem
Z
A
$2 �UdA ¼

I
ðdR	 nÞ �U ¼

I
e? �Uds; ð56Þ
where � is an arbitrary operation,U a scalar, vectorial or tensorial term and e? is the unit vector, normal to

the boundary curve (Fig. 12). A structure such as
dAi � dAe ¼
I

e? � ½ ~U�dwds�
Z
A
$2 � ½ ~U�dwdA ð57Þ
is formed, in which the underlined term (see Trostel, 1985, 1988) represents the boundary work, and the

remaining term represents the Euler–Lagrange equations. Furthermore some terms appear such as
I
e? � ð�smS � dÞ � �ðdr� $2Þds; ð58Þ
which have to be additionally transformed in the sense of Thomson–Tait, because, in case of a variation of
dr, the part or=os at the boundary is already determined and has not been varied independently. Therefore

the Nabla-Operator in (58) has to be rearranged in a part perpendicular and a part tangential to the edge

curve
Fig. 12. Edge curve.
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$b
2 ¼ eb

o

os
þ e?

o

os?
: ð59Þ
The term (58) has to be processed corresponding to (59) (see also K€uhhorn, 1991).

2.5.2. The nonlinear equilibrium and boundary conditions

Subsequently, the quantities �w, which put together parts from the skin and the core, are marked with an

overline, whereas combinations with core parts only are marked as ~w. Using the definitions (17), (19), (22),

(24), (47), (48) and (49) the second Piola–Kirchhoff tensors are determined (see Figs. 4–7):
N ¼ N þ cn; M ¼ M þ d
h

cm; ð60Þ

mS ¼ smS �
t
h

cm; mD ¼ d
2

smD � d
h

th
4

�
þ h2

8

�
cnþ d

2h
c n
h2i
; ð61Þ

~n ¼ h2

16
cn� 3

8
c n
h2i

þ 1

2h2
c n
h4i
; ~m ¼ � h

12
cmþ 1

3h
c n
h3i

ð62Þ
as well as, the first Piola–Kirchhoff tensors, which are needed for the equilibrium conditions:
N
1P ¼ N � FT þM � GT þ $2 � ðmS � dÞ; ð63Þ

M
1P ¼ M � FT þ d2

4
N � GT þ $2 � ðmD � dÞ: ð64Þ
Corresponding to the variations dr, dd, daz1, daz2 the field equations for force, moment, and bi-moments

equilibrium arise
dr : $2 � N
1P

�
þ d

h
cQ � d

�
þ p0 ¼ 0; ð65Þ

dd : $2 � ðM
1PÞ � d

h
cQ � FT � d

h
c t
h0i
d þmS � �ð$2 � $2 � rÞ þmD � �ð$2 � $2 � dÞ þ p1 ¼ 0; ð66Þ

daz1 : $2 �
�
� h
6

cQ þ $2 � ~m
�
� 2

h
c t
h1i

¼ 0; ð67Þ

daz2 : $2 �
1

4
cQ
h1i�

þ $2 � ~n
�
þ 1

2
c t
h0i

� 6

h2
c t
h2i

¼ 0; ð68Þ
including the associated boundary conditions
dr : pb ¼ e? � N
1P

�
þ d

h
cQ � d

�
þ o

os
ðmS?bdÞ

odr
os?

: mb
S ¼ e? � e? � �ð�mS � dÞ;

ð69Þ

dd : mb ¼ e? �M1P þ o

os
ðmD?bdÞ

odd
os?

: mb
D ¼ e? � e? � �ð�mD � dÞ;

ð70Þ
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daz1 :
cqbz1 ¼ e? �

�
� h
6

cQ þ $2 � ~m
�
� o

os
ð~m?bÞ

odaz1
os?

: �~mb
?? ¼ e? � e? � �ð�~mÞ;

ð71Þ

daz2 :
cmb

z2 ¼ e? � 1

4
cQ
h1i�

þ $2 � ~n
�
� o

os
ð~n?bÞ

odaz2
os?

: �~nb?? ¼ e? � e? � �ð�~nÞ:
ð72Þ
In (69)–(72) the generalised Thomson–Tait (drilling-) contributions appear (o=os½� � ��), where the label-

ling ‘‘? b’’ of a quantity w has to be interpreted as ½w�?b ¼ e? � eb � �½w�. The first PK-tensors (63) and (64)

and the expression cQ � d are dyads (as well as FT and GT), which are planar with respect to the un-

deformed and spatial with regard to the deformed configuration, according to an arbitrary, e.g. cartesian
base. Thus the terms mS � d respectively, mD � d correspond to [2 · 3 · 3] tensors of third-order. A com-

parison with K€uhhorn (1991, 1993) and K€uhhorn and Schoop (1992) clearly shows the extension due to

consideration of the core warping (additional terms cw and the additional equation (68) due to the eighth

DOF).

2.6. Remarks on material equations

Generally, arbitrary material equations are applicable for the determination of the second PK-stresses in
the skins and in the core, whereas a plane stress state (‘‘Upl’’) with regard to the skins is required. Applying

the hyperelastic SaintVenant–Kirchhoff law
S ¼ C
h4i

� �D; ð73Þ

e.g., the particular case of isotropy for the second PK-stresses of the skins
sSpl ¼ 2sG sD

�
þ

sm
1� sm

trsDð ÞEpl

�
ð74Þ
and the second PK-stresses in the core
cS ¼ 2cG cD

�
þ

cm
1� 2cm

trcDð ÞE
�

are obtained, which allows the calculation of the corresponding stress resultants.

2.7. First-order theory for plane SW-structures

Considering a linearisation of the general non-linear theory, first-order equations are presented with

regard to a cartesian coordinate system (Fig. 13).

2.7.1. Kinematics

According to the eight DOFs we introduce (see Figs. 13 and 8):

• the displacement vector (of the geometric midsurface)
u ¼ upl þ wez¼^ ½u; v;w� with upl¼^ ½u; v�; ð75Þ



Fig. 13. Cartesian coordinates and base.
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• the plane angular vector of the cross-section
bpl¼
^ ½by ;�bx�; ð76Þ
• the increase of director length e3 and the intensity coefficients of the generalised thickness stretch (see

(35) and Fig. 9)
e3 ¼
h
d
az0; az1; az2: ð77Þ
With
rI ¼ Rþ u; dI ¼ bpl þ ð1þ e3Þez;
FIT ¼ $2 � uþr2 � R; G IT ¼ $2 � bpl þ ð$2e3Þ � ez;

ð78Þ
the strains according to (18), (20), (22), (25) are
DI ¼ 1

2
ð$2 � upl þ upl � $2Þ; jI ¼ 1

2
ð$2 � bpl þ bpl � $2Þ; ð79Þ

j
hKiI

S ¼ �$2 � $2w; j
hKiI

D ¼ � d
2
$2 � $2e3 ð80Þ
and to (43)–(45) or (37)–(39)
ceIs ¼
d
2h

bpl

�
þ $2w� h2

6d
$2az1

�
þ z
8
$2az2; ð81Þ

ceIzz ¼
d
h
e3 �

1

2
az2 þ

z
h=2

az1 þ
z2

h2=6
az2; ð82Þ

cDI ¼
X4
‘¼0

z‘cDI
h‘i

with cDI
h‘i
byð43Þ: ð83Þ
2.7.2. Material laws

In general, an arbitrary constitutive law can be used for the core, whereas for the skins a constitutive law
according to the assumed plane stress state has to be applied. From the use of Hooke’s law (K€uhhorn and

Silber, 2000) the (planar) skin stress resultants
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N ¼ 2sG2t DI

�
þ

sm
1� sm

trDIE

�
;

M ¼ 2sG
td2

2
jI

�
þ

sm
1� sm

trjIE

�
;

ð84Þ

smS ¼ 4sG
t3

12
jS

hKiI
�

þ
sm

1� sm
trjS

hKiI
E

�
;

smD ¼ 4sG
t3

12
jD

hKi I
�

þ
sm

1� sm
trjD

hKi I
E

� ð85Þ
and the core stresses (3-dimensional) arise, considering (41):
cS ¼ 2cG cDE3I
�

þ
cm

1� 2cm
trcDE3IE

�
: ð86Þ
2.7.3. The equilibrium and boundary conditions

In first-order theory the equilibrium conditions are formulated with regard to the undeformed config-

uration. Applying the equations of Section 2.5.2 it has to be noted that
F ) E2;G ) 0
h2i
; d ) ez; $2 � $2 � r ) 0

h3i
; $2 � $2 � d ) 0

h3i
and that
N
1P ¼ N þ $2 � �mS � ez; M

1P ¼ M þ $2 � �mD � ez ð87Þ

has to be set. The equilibrium and boundary conditions of the first-order theory can be clearly splitted using

the forms (60)–(62) in parts which are symmetric and antimetric with reference to the midsurface:

• symmetric part (contains the disk problem) of the equilibrium conditions
dupl : $2 �N þ p0pl ¼ 0 ð88Þ

de3 : $2 � $2 � �mD � d
h

c t
h0i

þ p1z ¼ 0; ð89Þ

daz2 : $2 �
1

4
cQ
h1i�

þ $2 � ~n
�
þ 1

2
c t
h0i

� 6

h2
c t
h2i

¼ 0 ð90Þ
and the boundary conditions
dupl : pbpl ¼ e? �N ; ð91Þ

de3 : mb
3 ¼ e? � $2 �mD; ð92Þ

ode3
os?

: ��mb
D ¼ ��mD?? ; ð93Þ

daz2 :
cmb

z2 ¼ e? � 1

4
cQ
h1i�

þ $2 � ~n
�
� o

os
~n?b; ð94Þ
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odaz2
os?

: �~nb?? ¼ �~n??; ð95Þ
• antimetric part (contains the plate problem) of the equilibrium conditions
dw : $2 �
d
h

cQ

�
þ $2 � �mS

�
þ p0z ¼ 0; ð96Þ

dbpl : $2 �M � d
h

cQ þ p1pl ¼ 0; ð97Þ

daz1 : $2 �
�
� h
6

cQ þ $2 � ~m
�
� 2

h
c t
h1i

¼ 0 ð98Þ
and the boundary conditions
dw : pbz ¼ e? � d
h

cQ

�
þ $2 � �mS

�
þ o

os
�mS?b ; ð99Þ

odw
os?

: �mb
S ¼ ��mS?? ; ð100Þ

dbpl : mb
pl ¼ e? �M; ð101Þ

daz1 :
cqbz1 ¼ e? �

�
� h
6

cQ þ $2 � ~m
�
� o

os
~m?b; ð102Þ

odaz1
os?

: �~mb
?? ¼ �~m??: ð103Þ
The equilibrium conditions (88), (96), (97) and the boundary conditions (91), (99), (101) describe the five

DOF theory by Reissner/Mindlin, which corresponds to the classic SWMT, if the skin bending and the

longitudinal core stiffness are neglected (see (61): �mS ) 0 and (60) cn ) 0). These equations basically de-

scribe the global structural behaviour of SW-structures. Local effects are described by the remaining

equations, which result from the extended kinematics, taking into account the core deformation and the

independent skin bending. Removing the 8th DOF az2 and neglecting the terms for the core warping
(cn ) 0, cm ) 0, ~n ) 0, ~m ) 0), the 7-DOF-theory (K€uhhorn, 1991, 1993; K€uhhorn and Schoop, 1992),

results.
3. Numerical evaluation of instability cases

The assessment of the quality of the presented SW-theory is realised using reference solutions for the

plate strip (assuming a width of b ¼ 1 and a plane strain state), which are computed using the Finite

Element Method (FEM). For this purpose a periodic solution without any disturbances is generated using a

skilful load application. The use of plane eight-node continuum elements with reduced integration and a

sufficient mesh density guarantees that the FEM-solution can be classified as an ‘‘exact’’ solution. These

reference solutions are compared with the solutions resulting from the specialisation of the nonlinear

equations (Section 2.5.2) with respect to the second-order theory.
Exemplarily, the results for symmetric skin wrinkling and for wrinkling of one skin are presented, while

the antimetric skin wrinkling is left out (for further details see Golze (2000)).
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The computation is exemplarily carried out using isotropic core and skin material with a common

stiffness relation from Wiedemann (1986):
sE=cE ¼ 480 and sm ¼ 0:3 as well as cm 
 0 ð104Þ
Two characteristic cases are considered for evaluation purposes, namely
I: \thick" skins ðlonger-wavedÞwith d ¼ hþ t
t

¼ 10 ð105Þ
II: \thin" skins ðshort-wavedÞwith d ¼ hþ t
t

¼ 40; ð106Þ
where the short-wave case II (half wave length � 0:4d) is more difficult to describe but the relevant case in

practice.

The solutions for the cases I and II will be compared applying:

A: Extended SW-theory with eight DOF and consideration of core warping. This theory corresponds to

the one presented in this paper.

B: Extended SW-theory with seven DOF neglecting core warping according to K€uhhorn (1991, 1993) and

K€uhhorn and Schoop (1992).
C: FEM-solution (plain strain) as described above.

The relevant wrinkling stress (critical stress) rxxK in the compressively loaded SW-skin is related to sE and

plotted over the normalized half wave length a=d (Figs. 14–17). Additionally, in the Figs. 14–17 the

eigenvectors at curve minimum according to theory A are presented. The solution of the instability cases

(Golze (2000)) is realised using appropriate wave approaches such as N ¼ N̂ cosðpa xÞ whereby N represents

a DOF according to (30).
Fig. 14. Case I––thick skins, symmetric skin wrinkling.



Fig. 15. Case II––thin skins, symmetric skin wrinkling.

Fig. 16. Case I––thick skins, one side wrinkling.
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3.1. Symmetric skin wrinkling

Associated evaluations are shown in Figs. 14 and 15. Fig. 14 shows a good match for case I in which
thick skins are considered, where results from theory A, presented in this paper, are located even closer to

the reference solution. The eigenvector illustrates the dominance (âz0 > âz2) of the bellied, quadratic part of
core warping (see Fig. 9B). The wrinkling half wave length a is computed to about 1.2-fold of the skin

midsurface distance d ¼ hþ t whereby the appearance of longer waves in this case I is documented.

In case II of thin skins (Fig. 15) a considerable improvement results from theory A, so that the solution

for this short-wave case of a=d � 0:4 is mostly corresponding to the reference solution. This time the



Fig. 17. Case II––thin skins, one side wrinkling.
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eigenvector (âz2 > âz0) shows a strong dominance of the warping contribution with 4th power in z-direction
(see Fig. 9D) and the corresponding contributions from linear core shear- and quadratic thickness strain.
3.2. Single-side skin warping

Again Fig. 16 shows a good match for case I (thick skins) with a closer approximation of A. The

minimum failure load appears at half wave lengths of about 1.5-fold d. For case II (thin skins, Fig. 17) A

results in a stiffer and B in a weaker solution with regard to the reference solution. A shows the closer
correlation. The eigenvector shows the dominance of âz1 and âz2 (Fig. 9C and D) and thus the significance

of these DOF.
4. Summary

The geometrically nonlinear theory for plane SW-structures using eight kinematic degrees of freedom

(r; d; az1; az2) described in this paper is applicable for arbitrary displacements and rotations with the

restriction to moderate strains. From the detailed consideration of the core deformation with respect to

cross-section warping as well as transversal and shear stiffness and with consideration of independent skin

bending, an extensive and closed description of the global and local (load application, skin wrinkling,. . .)
SW-structural behaviour becomes possible. The nonlinear equations (Section 2.5.2) include simple special-
ization with respect to the first or second-order theory. The effectiveness of the theory with respect to the

prediction of skin wrinkling is demonstated applying a plate strip subjected to a compressive (symmetric

mode) and bending moment load (wrinkling of only one skin) as example. Corresponding numerical

investigations prove the efficiency of the theory if the wrinkling half wavelength is greater than 0.4 times the

core thickness, a condition which holds for a lot of applications (Wiedemann, 1986). For shorter wavelengths
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the assumption of quadratic thickness strain distribution becomes too crude and therefore the applicability is

limited.
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